九九香蕉视频,欧美 亚洲 日韩 国产,18禁日本黄无遮挡网站,91www在线观看,亚洲中文字幕97久久精品少妇,国产男人天堂,欧美中文字幕,91精品国产一区
技術文章您現在的位置:首頁 > 技術文章 > Clickchemistrytools-HPG/AHA Protein Synthesis Assay Protocol

Clickchemistrytools-HPG/AHA Protein Synthesis Assay Protocol

更新時間:2023-10-16   點擊次數:1292次

HPG/AHA Protein Synthesis Assay Protocol Fluorescent Microscopy

Introduction

L-homopropargylglycine (HPG) and L-Azidohomoalanine (AHA) are non-radioactive alternatives to the traditional 35S-methionine which is incorporated into proteins during active protein synthesis and can be directly added to cells. Commercial HPG- and AHA-based kits used for detection of de novo synthesized proteins provide great results, but are often quite expensive and provide fixed amounts of reagents, which limits optimized or off-protocol use of these kits. Self-assembled kits are a viable alternative to commercially available kits, in particular when all of the components are widely available from a number of suppliers. The amounts of reagents and the click reaction conditions are very similar between many commercial kits, and are in line with large number of published procedures for HPG- and AHA-based detection of newly synthesized proteins. Using the provided protocols, a researcher will be able to assemble an HPG or AHA Protein Synthesis Assay that would require very little, if any, fine tuning.

These kits with improved biocompatibility and detection limits were first commercialized by Thermo Fisher Scientific and sold under Click-iT® HPG and Click-iT® AHA. Click Chemistry Tools kits take advantage of next generation, copper chelating azides. The introduction of a copper-chelating moiety at the azide reporter molecule allows for a dramatic increase of the effective Cu(I) concentration at the reaction site, enhancing the weakest link in the reaction rate acceleration, greatly increasing the sensitivity and biocompatibility of HPG- and AHA-based assays for analyzing protein synthesis in cells.

Materials Required

  • HPG (L-Homopropargylglycine)(貨號:1067-25) or AHA (L-Azidohomoalanine)

  • AZDye Picolyl Azide(貨號:1254-1等別的波長)

  • Copper (II) Sulfate pentahydrate

  • THPTA.(貨號:1010-100

  • Sodium ascorbate

  • Fixative (3.7% formaldehyde in PBS)

  • Permeabilization reagent (for example, 0.5% solution of Triton®X-100 in PBS)

  • 3% BSA in PBS (pH 7.4)

  • Hoechst 33342 (optional)

Material Preparation

HPG/AHA Stock SolutionPrepare 50 mM solution of HPG or AHA in DMSO or water, for example to make 1 mL of 50 mM stock solution dissolve 8 mg of HPG or 9 mg of AHA in 1 mL of DMSO or water
AZDye Picolyl Azide Stock SolutionPrepare 1 mM solution in DMSO or water. Example: to make 150 µL, dissolve the entire AZDye Picolyl Azide Kit Pack in 150 µL of DMSO or water
Copper Catalyst (25 mM CuSO4, 62.5 mM THPTA) solutionWeight out 312 mg of Copper (II) Sulfate Pentahydrate and 1.35 g of THPTA, add 50 mL of water, vortex to dissolve completely
Reaction Buffer50 mM Tris, 150 mM NaCl, pH 7.5. Dissolve 3.02 g of Tris, 4.4 g of NaCl in 500 mL of water, adjust pH to 7.5, sterile filter
Hoechst 3334210 mg/mL stock solution. Dissolve 1 mg of Hoechst 33342 in 100 µL of deionized water
Reducing AgentDissolve 20 mg of sodium ascorbate in 1.8 mL of deionized water. Vortex until completely dissolved. Sodium ascorbate solution is susceptible to oxidation. We recommend always using freshly prepared solution of sodium ascorbate
Wash buffer0.5 mM EDTA, 2 mM NaN3 in PBS. Add 1 mL of 0.5 M EDTA and 0.13 g of dry sodium azide to 1 L of PBS. Sterile filter for long term storage

1. Cell labeling with HPG/AHA

This protocol is based on a large number of publications of HPG- and AHA-based procedures for analyzing peptide synthesis in cells used with different types of cells. An optimized HPG/AHA concentration is 50 μM but may need adjustment depending on the given cell type. Growth medium, cell density, cell type variations, and other factors may influence labeling. Investigators are encouraged to determine the optimal concentration of the HPG reagent as well as labeling time individually for each cell type on a small-scale first.

  1. Plate the cells on coverslips at the desired density and allow them to recover overnight before additional treatment

  2. Prepare 50 mM solution of HPG or AHA in DMSO or water

  3. Wash cells once with PBS, add methionine-free medium and incubate the cells at 37°C for 30–60 minutes to deplete methionine reserves

  4. Add desired amount of HPG or AHA to cells in L-methionine-free culture medium to achieve optimal working HPG/AHA concentration (50 μM, if not optimized)

  5. During addition of HPG or AHA to cells in culture, avoid disturbing the cells in ways that may disrupt the normal cell cycling patterns

  6. Incubate the cells for the desired length of time under conditions optimal for the cell type. Different cell types may require different incubation periods for optimal labeling with HPG or AHA. As a starting point we recommend 50 μM HPG or AHA for 1 hour

  7. Proceed immediately to Cell fixation and permeabilization

2. Cell fixation and permeabilization

The following protocol is provided for the fixation step using 3.7% formaldehyde in PBS followed by a 0.5% Triton® X-100 permeabilization step. Protocols using other fixation/permeabilization reagents, such as methanol and saponin, can also be used.

  1. Transfer each coverslip into a single well. For convenient processing, use 6-well plates

  2. After metabolic labeling, remove the media and add 1 mL of 3.7% formaldehyde in PBS to each well containing the coverslips. Incubate for 15 minutes at room temperature

  3. Remove the fixative and wash the cells in each well twice with 1 mL of 3% BSA in PBS

  4. Remove the wash solution. Add 1 mL of 0.5% Triton® X-100 in PBS to each well, then incubate at room temperature for 20 minutes

3. HPG/AHA detection

Note: 500 μL of the reaction cocktail is used per coverslip. A smaller volume can be used as long as the remaining reaction components are maintained at the same ratios.

  1. Prepare the required amount of the reaction cocktail according to Table 1. Add the ingredients in the order listed in the table. Use the reaction cocktail within 15 minutes of preparation.

    Table 1

    Reaction compo-nentNumber of coverslips
    1245102550
    1x Reaction Buffer
    (Material preparation)
    430 µL860 µL1.7 mL2.2 mL4.3 mL10.7 mL21.4 mL
    Copper Catalyst
    (Material preparation)
    20 µL40 µL80 µL100 µL200 µL500 µL1 mL
    Picolyl Azide Solution
    (Material preparation)
    2.5 µL5 µL10 µL12.5 µL25 µL62.5 µL125 µL
    Reducing Agent
    (Material preparation)
    50 µL100 µL200 µL250 µL500 µL1.25 µL2.5 mL
    Total Volume500 µL1 mL2.0 mL2.5 mL5.0 mL12.5 mL25 mL


  2. Remove the permeabilization buffer (step 2.4). Wash the cells in each well twice with 1 mL of 3% BSA in PBS. Remove the wash solution.

  3. Add 0.5 mL of the Reaction Cocktail to each well containing a coverslip. Rock the plate briefly to ensure that the reaction cocktail is distributed evenly over the coverslip.

  4. Protect from light, and incubate the plate for 30 minutes at room temperature

  5. Remove the reaction cocktail. Wash each well once with 1 mL of 3% BSA in PBS. Remove the wash solution.

  6. Wash each well once with 1 mL of Wash Buffer. Remove the wash solution.

  7. Wash each well once with 1 mL of PBS. Remove the wash solution.
    At this point the samples are ready for DNA staining. If no DNA staining is desired, proceed to Imaging
    If antibody labeling of the samples is desired, proceed to labeling according to manufacturer’s recommendations. Keep the samples protected from light during incubation.

4. DNA staining

  1. Wash each well with 1 mL of PBS. Remove the wash solution.

  2. repare 1x Hoechst 33342 solution by diluting stock solution of Hoechst 33342 1:2000. The final concentration of 1x Hoechst 33342 solution is 5 µg/mL.
    Final concentrations of 1x Hoechst 33342 may range from 2 μg/mL to 10 μg/mL.

  3. Add 1 mL of 1x Hoechst 33342 solution per well. Protect from light. Incubate for 30 minutes at room temperature.

  4. Remove the Hoechst 33342 solution.

  5. Wash each well twice with 1 mL of PBS.

  6. Remove the wash solution.

Imaging

Labeled cells are compatible with all methods of slide preparation

Selected References:
  1. Dieterich, D. C., Link, A. J., Graumann, J., Tirrell, D. A., & Schuman, E. M., et al. (2006). Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proceedings of the National Academy of Sciences of the United States of America, 103 (25), 9482-87. 

靶點科技(北京)有限公司

靶點科技(北京)有限公司

地址:中關村生命科學園北清創意園2-4樓2層

© 2025 版權所有:靶點科技(北京)有限公司  備案號:京ICP備18027329號-2  總訪問量:371136  站點地圖  技術支持:化工儀器網  管理登陸

主站蜘蛛池模板: 综合久久久久久久综合网| 久久窝窝国产精品午夜看片| 国产一区三区二区中文在线| 日韩精品一区二区三区免费在线观看| 67194在线午夜亚洲| 欧美不卡在线视频| 天天色天天操综合网| 天天综合亚洲| 亚洲精品天堂自在久久77| 国产在线精品美女观看| 国产91成人| 亚洲日本精品一区二区| 成人一级免费视频| 国产手机在线ΑⅤ片无码观看| 国产精品一区二区国产主播| 国产日韩久久久久无码精品| 成人国产精品视频频| 91蜜芽尤物福利在线观看| 人妻91无码色偷偷色噜噜噜| 亚洲欧美天堂网| 香蕉久久永久视频| 在线免费亚洲无码视频| 亚洲aaa视频| 亚洲人成人无码www| 国产成人亚洲综合a∨婷婷| 99久久精品免费看国产免费软件| 日本道综合一本久久久88| www.av男人.com| 亚洲AV无码精品无码久久蜜桃| 99re视频在线| 麻豆精品视频在线原创| 深爱婷婷激情网| 日韩欧美成人高清在线观看| 一区二区三区在线不卡免费| 伊人中文网| 99热这里只有免费国产精品 | 日本精品视频| 1769国产精品免费视频| 18禁黄无遮挡网站| 波多野结衣亚洲一区| 欧美一区二区自偷自拍视频| 久久精品国产精品青草app| 国产微拍一区| 一本久道久久综合多人| 园内精品自拍视频在线播放| 国产无码制服丝袜| 国产国语一级毛片| 国产精品手机视频| 无码电影在线观看| 视频一本大道香蕉久在线播放 | 欧美爱爱网| 996免费视频国产在线播放| 国产精品思思热在线| 91精品情国产情侣高潮对白蜜| 欧美激情成人网| 免费观看国产小粉嫩喷水| 国产综合日韩另类一区二区| 亚洲精品大秀视频| 亚洲国产成人精品一二区| 日韩中文无码av超清| 全午夜免费一级毛片| 国内精品久久久久鸭| 91亚洲视频下载| 欧美97色| 精品免费在线视频| 久久亚洲高清国产| 久久精品国产精品一区二区| 欧美日韩一区二区三区四区在线观看| 亚洲精品中文字幕无乱码| 国产亚洲欧美在线中文bt天堂| 国产欧美视频在线观看| 日韩精品免费一线在线观看| 国产日本一线在线观看免费| 亚洲综合色区在线播放2019| 欧美色亚洲| 极品尤物av美乳在线观看| 亚洲色图欧美一区| 色呦呦手机在线精品| www.日韩三级| 91毛片网| 又黄又湿又爽的视频| 久久婷婷人人澡人人爱91|